27. Retaining the self-released chalcogenate at reconstructed cobalt sites by self-transformed carbonate regulation for boosted oxygen evolution.
J. Zhao; Z. Xue; Q. Wang; X. Li*; S. Liu; X. Zhao*
Journal of Energy Chemistry 2024, 97, 46.
26. Anchoring isolated Pd atoms on Ti3C2Tx MXene with boosted kinetics for alkaline hydrogen evolution.
25. Strain-engineered Ru-NiCr LDH nanosheets boosting alkaline hydrogen evolution reaction.
J. Yang; S. Yang; L. An; J. Zhu; J. Xiao ; X. Zhao; D. Wang*
24. Heterostructural Ni‐Ni0.2Mo0.8N interface engineering boosts alkaline hydrogen electrocatalysis.
L. L. An; J Yang; J. Zhu; C. Yang; X. Zhao*; D. L. Wang*
ChemSusChem 2023, 16, e202300218.
23. Pseudo-Pt monolayer for robust hydrogen oxidation.
T. Zhao; M. Li; D. Xiao; X. Yang; Q. Li; L. An; Z. Deng; T. Shen; M. Gong; Y. Chen; G. Wang; X. Zhao; L. Xiao; X. Yang; L. Li; D. L. Wang*
Journal of the American Chemical Society 2023, 145, 4088.
T. Shen; S. Chen; S. Wang; X. Huang; M. Song; X. Zhao; J. Hu; D. L. Wang*
21. Nitrogen-inserted nickel nanosheets with controlled orbital hybridization and strain fields for boosted hydrogen oxidation in alkaline electrolytes.
X. Zhao; X. Y. Li; L. L. An; K. Iputera; J. Zhu; P. F. Gao; R. S. Liu;* Z. M. Peng;* J. L. Yang;* D. L. Wang*
Energy & Environmental Science 2022, 15, 1234.
20. Controlling the valence-electron arrangement of nickel active centers for efficient hydrogen oxidation electrocatalysis.
X. Zhao; X. Y. Li; L. L. An; L. R. Zheng;* J. L. Yang;* D. L. Wang*
Angewandte Chemie International Edition 2022, 61, e202206588.
19. Connection of Ru nanoparticles with rich defects enables enhanced electrochemical reduction of nitrogen.
X. Tang; X. Tian; L. Zhou; F. Yang; R. He; X. Zhao*; W. K. Zhu*
Physical Chemistry Chemical Physics 2022, 24, 11491.
18. Enhancing hydrogen electrocatalytic oxidation on Ni3N/MoO2 in-plane heterostructures in alkaline solution.
L. L. An; S. F. Deng; X. Y. Guo; X. P. Liu; T. Zhao; K. Chen; Y. Zhu; Y. Fu; X. Zhao*; D. L. Wang*
Chinese Journal of Catalysis 2022, 43, 3154.
17. Engineering location and supports of atomically ordered L10-PdFe intermetallics for ultra-anticorrosion electrocatalysis.
T. Shen; M. Gong; D. Xiao; T. Shang; X. Zhao; J. Zhang; D. L. Wang*
Advanced Functional Materials 2022, 32, 2203921.
16. Chitin derived carbon anchored ultrafine Ru nanoparticles for efficient hydrogen evolution reaction.
E. Ma; T. Shen; D. Ying; W. Liu; X. Zhao; L. Zhang; D. Wang*
15. Atomic-level insight into reasonable design of metal-based catalysts for hydrogen oxidation in alkaline electrolytes.
L. L. An; X. Zhao*; T. Zhao; D. L. Wang*
Energy & Environmental Science 2021, 14, 2620.
14. Isolated Pd atom anchoring endows cobalt diselenides with regulated water-reduction kinetics for alkaline hydrogen evolution.
X. Zhao; X. Y. Li; D. D. Xiao; M. X. Gong; L. L. An; P. F. Gao; J. L. Yang;* D. L. Wang*
Applied Catalysis B: Environmental 2021, 295, 120280.
13. Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction.
M. Gong; D. Xiao; Z. Deng; R. Zhang; W. Xia; T. Zhao; X. Liu; T. Shen; Y. Hu; Y. Lu; X. Zhao; H. Xin;* D. L. Wang*
Applied Catalysis B: Environmental 2021, 282, 119617.
12. Surface engineering of PdFe ordered intermetallics for efficient oxygen reduction electrocatalysis.
M. Gong; T. Shen; Z. Deng; H. Yang; Z. Li; J. Zhang; R. Zhang; Y. Hu; X. Zhao; H. Xin;* D. L. Wang*
Chemical Engineering Journal 2021, 408, 127297.
11. Boosting alkaline hydrogen electrooxidation on an unconventional fcc-Ru polycrystal.
T. Zhao; D. Xiao; Y. Chen; X. Tang; M. Gong; S. Deng; X. Liu; J. Ma; X. Zhao; D. L. Wang*
10. Lowering interfacial dissolved gas concentration for highly efficient hydrazine oxidation at platinum by fluorosurfactant modulation.
X. Zhao; R. Ranaweera; J. C. Mixdorf; H. M. Nguyen*; L. Luo*
9. Highly efficient hydrogen evolution of platinum via tuning interfacial dissolved-gas concentration.
X. Zhao; R. Ranaweera; L. Luo*
Chemical Communications 2019, 55, 1378.
8. Gas bubbles in electrochemical gas-evolving reactions.
X. Zhao; H. Ren; L. Luo*
7. Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution.
X. Zhao; X. Q. Li; Y. Yan; Y. L. Xing; S. C. Lu; L. Y. Zhao; S. M. Zhou; Z. M. Peng;* J. Zeng*
Applied Catalysis B: Environmental 2018, 236, 569.
6. Phosphrous-modulated cobalt selenide enable engineered reconstruction of active layers for efficient oxygen evolution.
X. Zhao; Y. L. Xing; L. Y. Zhao; S. C. Lu; F. Ahmad; J. Zeng*
Journal of Catalysis 2018, 368, 155.
5. Engineering the electrical conductivity of lamellar silver-doped cobalt(II) selenide nanobelts for enhanced oxygen evolution.
X. Zhao; H. T. Zhang; Y. Yan; J. H. Cao; X. Q. Li; S. M. Zhou; Z. M. Peng;* J. Zeng*
Angewandte Chemie International Edition 2017, 56, 328.
4. Gold atom-decorated CoSe2 nanobelts with engineered active sites for enhanced oxygen evolution.
X. Zhao; P. F. Gao; Y. Yan; X. Q. Li; Y. L. Xing; H. L. Li; Z. M. Peng;* J. L. Yang; J. Zeng*
Journal of Materials Chemistry A 2017, 5, 20202.
3. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition.
S. M. Zhou;* X. B. Miao; X. Zhao; C. Ma; Y. H. Qiu; Z. P. Hu;* J. Y. Zhao; L. Shi; J. Zeng*
Nature Communications 2016, 7, 11510.
2. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction.
X. Zhao; S. Chen; Z. C. Fang; J. Ding; W. Sang; Y. C. Wang; J. Zhao; Z. M. Peng;* J. Zeng*
Journal of the American Chemical Society 2015, 137, 2804.
1. One-step synthesis of hybrid nanocrystals with rational tuning of the morphology.
W. Sang; T. T. Zheng; Y. C. Wang; X. Li; X. Zhao; J. Zeng;* J. G. Hou